OCR Additional Maths Exam Questions - Binomial Expansion

- 2 Expand $(1-x)^{12}$ in ascending powers of x up to the term in x^3 , and simplify your answer. [3]
- 13 (i) Find the coefficients a, b and c in the expansion

$$(2+h)^3 = 8 + ah + bh^2 + ch^3$$
.

(ii) The graph of the equation $y = x^3$ passes through the points P and Q which have x-coordinates 2 and 2 + h respectively.

Show that the gradient of the chord PQ is
$$\frac{(2+h)^3-8}{h}$$
. [3]

- (iii) Express $\frac{(2+h)^3-8}{h}$ as a quadratic function of h. [2]
- (iv) As the value of h decreases, the point Q gets closer and closer to the point P on the curve. As h gets closer to 0 the chord PQ gets closer to being the tangent to the curve at P.

Deduce the value of the gradient of the tangent at P. [1]

(v) Kareen uses the same method to deduce the value of the gradient of the tangent at the point (2, 16) on the curve $y = x^4$.

The first three lines of her working are given below and in the answer booklet.

Take Q to be the point
$$(2 + h, (2 + h)^4)$$

The gradient of the chord PQ is given by
$$\frac{(2+h)^4-16}{h}$$
 =

Complete Kareen's working. [3]

- 6 (i) Expand $\left(x \frac{1}{x}\right)^4$ using the binomial expansion. Show all your working. [4]
 - (ii) Explain why the substitution x = 1 will help to justify your answer. [1]